
DeepSpeed
Release 0.3.0

Feb 23, 2021

Contents

1 Model Setup 1
1.1 Training Setup . 1

2 Configuration 5
2.1 DeepSpeed Configuration . 5

3 Training API 9
3.1 Training API . 9

4 Checkpointing API 11
4.1 Model Checkpointing . 11
4.2 Activation Checkpointing . 12

5 Transformer Kernel API 15
5.1 Transformer Kernels . 15

6 Pipeline Parallelism 17
6.1 Pipeline Parallelism . 17

7 Indices and tables 25

Python Module Index 27

Index 29

i

ii

CHAPTER 1

Model Setup

1.1 Training Setup

1.1.1 Argument Parsing

DeepSpeed uses the argparse library to supply commandline configuration to the DeepSpeed runtime. Use
deepspeed.add_config_arguments() to add DeepSpeed’s builtin arguments to your application’s parser.

parser = argparse.ArgumentParser(description='My training script.')
parser.add_argument('--local_rank', type=int, default=-1,

help='local rank passed from distributed launcher')
Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
cmd_args = parser.parse_args()

deepspeed.add_config_arguments(parser)

Update the argument parser to enabling parsing of DeepSpeed command line arguments. The set of
DeepSpeed arguments include the following: 1) –deepspeed: boolean flag to enable DeepSpeed 2)
–deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime.

Parameters parser – argument parser

Returns Updated Parser

Return type parser

1.1.2 Training Initialization

The entrypoint for all training with DeepSpeed is deepspeed.initialize(). Will initialize distributed backend
if it is not intialized already.

Example usage:

1

https://docs.python.org/3/library/argparse.html

DeepSpeed, Release 0.3.0

model_engine, optimizer, _, _ = deepspeed.initialize(args=cmd_args,
model=net,
model_parameters=net.

→˓parameters())

deepspeed.initialize(args, model, optimizer=None, model_parameters=None, training_data=None,
lr_scheduler=None, mpu=None, dist_init_required=None, collate_fn=None,
config_params=None)

Initialize the DeepSpeed Engine.

Parameters

• args – a dictionary containing local_rank and deepspeed_config file location

• model – Required: nn.module class before apply any wrappers

• optimizer – Optional: a user defined optimizer, this is typically used instead of defining
an optimizer in the DeepSpeed json config.

• model_parameters – Optional: An iterable of torch.Tensors or dicts. Specifies what
Tensors should be optimized.

• training_data – Optional: Dataset of type torch.utils.data.Dataset

• lr_scheduler – Optional: Learning Rate Scheduler Object. It should define a get_lr(),
step(), state_dict(), and load_state_dict() methods

• mpu – Optional: A model parallelism unit object that implements
get_{model,data}_parallel_{rank,group,world_size}()

• dist_init_required – Optional: None will auto-initialize torch.distributed if needed,
otherwise the user can force it to be initialized or not via boolean.

• collate_fn – Optional: Merges a list of samples to form a mini-batch of Tensor(s). Used
when using batched loading from a map-style dataset.

Returns

A tuple of engine, optimizer, training_dataloader, lr_scheduler

• engine: DeepSpeed runtime engine which wraps the client model for distributed training.

• optimizer: Wrapped optimizer if a user defined optimizer is supplied, or if optimizer
is specified in json config else None.

• training_dataloader: DeepSpeed dataloader if training_data was supplied,
otherwise None.

• lr_scheduler: Wrapped lr scheduler if user lr_scheduler is passed, or if
lr_scheduler specified in JSON configuration. Otherwise None.

1.1.3 Distributed Initialization

Optional distributed backend initializating separate from deepspeed.initialize(). Useful in scenarios where
the user wants to use torch distributed calls before calling deepspeed.initialize(), such as when using model
parallelism, pipeline parallelism, or certain data loader scenarios.

deepspeed.init_distributed(dist_backend=’nccl’, auto_mpi_discovery=True,
distributed_port=29500, verbose=True, time-
out=datetime.timedelta(seconds=1800), init_method=None)

Initialize torch.distributed backend, potentially performing MPI discovery if needed

2 Chapter 1. Model Setup

DeepSpeed, Release 0.3.0

Parameters

• dist_backend – Optional (str). torch distributed backend, e.g., nccl, mpi, gloo

• Optional (auto_mpi_discovery) –

• distributed_port – Optional (int). torch distributed backend port

• verbose – Optional (bool). verbose logging

• timeout – Optional (timedelta). Timeout for operations executed against the process
group. Default value equals 30 minutes.

• init_method – Optional (string). Torch distributed, URL specifying how to initialize the
process group. Default is “env://” if no init_method or store is specified.

1.1. Training Setup 3

DeepSpeed, Release 0.3.0

4 Chapter 1. Model Setup

CHAPTER 2

Configuration

2.1 DeepSpeed Configuration

2.1.1 Configurations

Training Setup

class deepspeed.config.TrainingConfig(**kwargs)
Top-level configuration for all aspects of training with DeepSpeed.

batch = None
Batch configuration, see BatchConfig

fp16 = None
FP16 training, see FP16Config

class deepspeed.config.BatchConfig(**kwargs)
Batch size related parameters.

train_batch_size = None
The effective training batch size.

This is the number of data samples that leads to one step of model update. train_batch_size
is aggregated by the batch size that a single GPU processes in one forward/backward
pass (a.k.a., train_step_batch_size), the gradient accumulation steps (a.k.a.,
gradient_accumulation_steps), and the number of GPUs.

train_micro_batch_size_per_gpu = None
The batch size to be processed per device each forward/backward step.

When specified, gradient_accumulation_steps is automatically calculated using
train_batch_size and the number of devices. Should not be concurrently specified with
gradient_accumulation_steps.

gradient_accumulation_steps = None
The number of training steps to accumulate gradients before averaging and applying them.

5

DeepSpeed, Release 0.3.0

This feature is sometimes useful to improve scalability since it results in less frequent commu-
nication of gradients between steps. Another impact of this feature is the ability to train with
larger batch sizes per GPU. When specified, train_step_batch_size is automatically calcu-
lated using train_batch_size and number of GPUs. Should not be concurrently specified with
train_step_batch_size.

resolve()
Complete batch configuration so long as two are provided.

is_valid()
Resolve any missing configurations and determine in the configuration is valid.

Returns Whether the config and all sub-configs are valid.

Return type bool

class deepspeed.config.FP16Config(**kwargs)
FP16 configuration.

enabled = None
Enable/disable FP16

clip = None
Gradient clipping

Training Optimizations

class deepspeed.config.FP16Config(**kwargs)
FP16 configuration.

enabled = None
Enable/disable FP16

clip = None
Gradient clipping

2.1.2 Extending Configurations

class deepspeed.config.Config(**kwargs)
Base class for DeepSpeed configurations.

Config is a struct with subclassing. They are initialized from dictionaries and thus also keyword arguments:

>>> c = Config(verbose=True)
>>> c.verbose
True
>>> c['verbose']
True

You can initialize them from dictionaries:

>>> myconf = {'verbose' : True}
>>> c = Config.from_dict(myconf)
>>> c.verbose
True

Configurations should be subclassed to group arguments by topic.

6 Chapter 2. Configuration

DeepSpeed, Release 0.3.0

resolve()
Infer any missing arguments, if possible.

This is useful for configs such as BatchConfig in only a subset of arguments are required to complete
a valid config.

is_valid()
Resolve any missing configurations and determine in the configuration is valid.

Returns Whether the config and all sub-configs are valid.

Return type bool

2.1. DeepSpeed Configuration 7

DeepSpeed, Release 0.3.0

8 Chapter 2. Configuration

CHAPTER 3

Training API

3.1 Training API

deepspeed.initialize() returns a training engine in its first argument of type DeepSpeedEngine. This
engine is used to progress training:

for step, batch in enumerate(data_loader):
#forward() method
loss = model_engine(batch)

#runs backpropagation
model_engine.backward(loss)

#weight update
model_engine.step()

3.1.1 Forward Propagation

deepspeed.DeepSpeedEngine.forward(self, *inputs, **kwargs)
Execute forward propagation

Parameters

• *inputs – Variable length input list

• **kwargs – variable length keyword arguments

3.1.2 Backward Propagation

deepspeed.DeepSpeedEngine.backward(self, loss, allreduce_gradients=True, release_loss=False)
Execute backward pass on the loss

Parameters

9

DeepSpeed, Release 0.3.0

• loss – Torch tensor on which to execute backward propagation

• allreduce_gradients – If this is False, then gradient averaging will be skipped. De-
fault is True.

3.1.3 Optimizer Step

deepspeed.DeepSpeedEngine.step(self, lr_kwargs=None)
Execute the weight update step after forward and backward propagation on effective_train_batch.

3.1.4 Gradient Accumulation

deepspeed.DeepSpeedEngine.is_gradient_accumulation_boundary(self)
Query whether the current micro-batch is at the boundary of gradient accumulation, and thus will trigger gradient
reductions and an optimizer step.

Returns if the current step is a gradient accumulation boundary.

Return type bool

10 Chapter 3. Training API

CHAPTER 4

Checkpointing API

4.1 Model Checkpointing

DeepSpeed provides routines for checkpointing model state during training.

4.1.1 Loading Training Checkpoints

deepspeed.DeepSpeedEngine.load_checkpoint(self, load_dir, tag=None,
load_module_strict=True,
load_optimizer_states=True,
load_lr_scheduler_states=True)

Load training checkpoint

Parameters

• load_dir – Required. Directory to load the checkpoint from

• tag – Checkpoint tag used as a unique identifier for checkpoint, if not provided will attempt
to load tag in ‘latest’ file

• load_module_strict – Optional. Boolean to strictly enforce that the keys in state_dict
of module and checkpoint match.

• load_optimizer_states – Optional. Boolean to load the training optimizer states
from Checkpoint. Ex. ADAM’s momentum and variance

• load_lr_scheduler_states – Optional. Boolean to add the learning rate scheduler
states from Checkpoint.

Returns

A tuple of load_path and client_state.

*load_path: Path of the loaded checkpoint. None if loading the checkpoint failed.

*client_state: State dictionary used for loading required training states in the client code.

11

DeepSpeed, Release 0.3.0

4.1.2 Saving Training Checkpoints

deepspeed.DeepSpeedEngine.save_checkpoint(self, save_dir, tag=None, client_state={},
save_latest=True)

Save training checkpoint

Parameters

• save_dir – Required. Directory for saving the checkpoint

• tag – Optional. Checkpoint tag used as a unique identifier for the checkpoint, global step
is used if not provided. Tag name must be the same across all ranks.

• client_state – Optional. State dictionary used for saving required training states in the
client code.

• save_latest – Optional. Save a file ‘latest’ pointing to the latest saved checkpoint.

4.2 Activation Checkpointing

The activation checkpointing API’s in DeepSpeed can be used to enable a range of memory optimizations relating
to activation checkpointing. These include activation partitioning across GPUs when using model parallelism, CPU
checkpointing, contiguous memory optimizations, etc.

Please see the DeepSpeed JSON config for the full set.

Here we present the activation checkpointing API. Please see the enabling DeepSpeed for Megatron-LM tutorial for
example usage.

4.2.1 Configuring Activation Checkpointing

deepspeed.checkpointing.configure(mpu_, deepspeed_config=None, parti-
tion_activations=None, contiguous_checkpointing=None,
num_checkpoints=None, checkpoint_in_cpu=None, syn-
chronize=None, profile=None)

Configure DeepSpeed Activation Checkpointing.

Parameters

• mpu – Optional: An object that implements the following methods
get_model_parallel_rank/group/world_size, and get_data_parallel_rank/group/world_size

• deepspeed_config – Optional: DeepSpeed Config json file when provided will be used
to configure DeepSpeed Activation Checkpointing

• partition_activations – Optional: Partitions activation checkpoint across model
parallel GPUs when enabled. By default False. Will overwrite deepspeed_config if provided

• contiguous_checkpointing – Optional: Copies activation checkpoints to a contigu-
ous memory buffer. Works only with homogeneous checkpoints when partition_activations
is enabled. Must provide num_checkpoints. By default False. Will overwrite deep-
speed_config if provided

• num_checkpoints – Optional: Number of activation checkpoints stored during the
forward propagation of the model. Used to calculate the buffer size for contigu-
ous_checkpointing Will overwrite deepspeed_config if provided

• checkpoint_in_cpu – Optional: Moves the activation checkpoint to CPU. Only works
with partition_activation. Default is false. Will overwrite deepspeed_config if provided

12 Chapter 4. Checkpointing API

https://www.deepspeed.ai/docs/config-json/
https://www.deepspeed.ai/tutorials/megatron/

DeepSpeed, Release 0.3.0

• synchronize – Optional: Performs torch.cuda.synchronize() at the beginning and end of
each call to deepspeed.checkpointing.checkpoint for both forward and backward pass. By
default false. Will overwrite deepspeed_config if provided

• profile – Optional: Logs the forward and backward time for each deep-
speed.checkpointing.checkpoint invocation. Will overwrite deepspeed_config if provided

Returns None

deepspeed.checkpointing.is_configured()

True if deepspeed activation checkpointing has been configured by calling deep-
speed.checkpointing.configure, else returns false

Parameters None –

Returns True of configured, else False

4.2.2 Using Activation Checkpointing

deepspeed.checkpointing.checkpoint(function, *args)
Checkpoint a model or part of the model. This has been directly copied from torch.utils.checkpoint.

deepspeed.checkpointing.reset()
Resets memory buffers related to contiguous memory optimizations. Should be called during eval when multiple
forward propagations are computed without any backward propagation that usually clears these buffers. :param
None:

Returns None

4.2.3 Configuring and Checkpointing Random Seeds

deepspeed.checkpointing.get_cuda_rng_tracker()
Get cuda rng tracker.

deepspeed.checkpointing.model_parallel_cuda_manual_seed(seed)
Initialize model parallel cuda seed.

This function should be called after the model parallel is initialized. Also, no torch.cuda.manual_seed should
be called after this function. Basically, this is replacement for that function. Two set of RNG states are tracked:

default state: This is for data parallelism and is the same among a set of model parallel GPUs
but different across different model paralle groups. This is used for example for dropout in
the non-model-parallel regions.

model-parallel state: This state is different among a set of model parallel GPUs, but the same
across data parallel groups. This is used for example for dropout in model parallel regions.

class deepspeed.checkpointing.CudaRNGStatesTracker
Tracker for the cuda RNG states.

Using the add method, a cuda rng state is initialized based on the input seed and is assigned to name. Later, by
forking the rng state, we can perform operations and return to our starting cuda state.

class deepspeed.checkpointing.CheckpointFunction(*args, **kwargs)
This function is adapted from torch.utils.checkpoint with two main changes:

1) torch.cuda.set_rng_state is replaced with _set_cuda_rng_state

2) the states in the model parallel tracker are also properly tracked/set/reset.

4.2. Activation Checkpointing 13

DeepSpeed, Release 0.3.0

3) Performance activation partitioning, contiguous memory optimization

4) CPU Checkpointing

5) Profile forward and backward functions

14 Chapter 4. Checkpointing API

CHAPTER 5

Transformer Kernel API

5.1 Transformer Kernels

The transformer kernel API in DeepSpeed can be used to create BERT transformer layer for more efficient pre-training
and fine-tuning, it includes the transformer layer configurations and transformer layer module initialization.

Here we present the transformer kernel API. Please see the BERT pre-training tutorial for usage details.

5.1.1 DeepSpeed Transformer Config

class deepspeed.DeepSpeedTransformerConfig(batch_size=-1, hidden_size=-
1, intermediate_size=-1,
heads=-1, attn_dropout_ratio=-
1, hidden_dropout_ratio=-1,
num_hidden_layers=-1, initializer_range=-
1, local_rank=-1, seed=-1, fp16=False,
pre_layer_norm=True, normal-
ize_invertible=False, gelu_checkpoint=False,
adjust_init_range=True,
attn_dropout_checkpoint=False, stochas-
tic_mode=False, huggingface=False, train-
ing=True)

Initialize the DeepSpeed Transformer Config.

Parameters

• batch_size – The maximum batch size used for running the kernel on each GPU

• max_seq_length – The sequence-length of the model being trained with DeepSpeed

• hidden_size – The hidden size of the transformer layer

• intermediate_size – The intermediate size of the feed-forward part of transformer
layer

15

https://www.deepspeed.ai/tutorials/bert-pretraining/

DeepSpeed, Release 0.3.0

• heads – The number of heads in the self-attention of the transformer layer

• attn_dropout_ratio – The ratio of dropout for the attention’s output

• hidden_dropout_ratio – The ratio of dropout for the transformer’s output

• num_hidden_layers – The number of transformer layers

• initializer_range – BERT model’s initializer range for initializing parameter data

• local_rank – Optional: The rank of GPU running the transformer kernel, it is not re-
quired to use if the model already set the current device, otherwise need to set it so that the
transformer kernel can work on the right device

• seed – The random seed for the dropout layers

• fp16 – Enable half-precision computation

• pre_layer_norm – Select between Pre-LN or Post-LN transformer architecture

• normalize_invertible – Optional: Enable invertible LayerNorm execution (drop-
ping the input activation), default is False

• gelu_checkpoint – Optional: Enable checkpointing of Gelu activation output to save
memory, default is False

• adjust_init_range – Optional: Set as True (default) if the model adjusts the weight
initial values of its self-attention output and layer output, False keeps the initializer_range
no change. See the adjustment below:

output_std = self.config.initializer_range / math.sqrt(2.0 * num_layers)

• attn_dropout_checkpoint – Optional: Enable checkpointing of attention dropout
to save memory, default is False

• stochastic_mode – Enable for high performance, please note that this flag has some
level of non-determinism and can produce different results on different runs. However, we
have seen that by enabling it, the pretraining tasks such as BERT are not affected and can
obtain a high accuracy level. On the other hand, for the downstream tasks, such as fine-
tuning, we recommend to turn it off in order to be able to reproduce the same result through
the regular kernel execution.

• huggingface – Enbale if using the HuggingFace interface style for sending out the for-
ward results.

• training – Enable for training rather than inference.

5.1.2 DeepSpeed Transformer Layer

class deepspeed.DeepSpeedTransformerLayer(config, initial_weights=None, ini-
tial_biases=None)

Initialize the DeepSpeed Transformer Layer.

Static variable: layer_id: The layer-index counter starting from 0 and incrementing by 1 every time a layer
object is instantiated, e.g. if a model has 24 transformer layers, layer_id goes from 0 to 23.

Parameters

• config – An object of DeepSpeedTransformerConfig

• initial_weights – Optional: Only used for unit test

• initial_biases – Optional: Only used for unit test

16 Chapter 5. Transformer Kernel API

CHAPTER 6

Pipeline Parallelism

6.1 Pipeline Parallelism

6.1.1 Model Specification

class deepspeed.pipe.PipelineModule(layers, num_stages=None, topology=None,
loss_fn=None, seed_layers=False, seed_fn=None,
base_seed=1234, partition_method=’parameters’,
activation_checkpoint_interval=0, activa-
tion_checkpoint_func=<function checkpoint>)

Modules to be parallelized with pipeline parallelism.

The key constraint that enables pipeline parallelism is the representation of the forward pass as a sequence of
layers and the enforcement of a simple interface between them. The forward pass is implicitly defined by the
module layers. The key assumption is that the output of each layer can be directly fed as input to the next,
like a torch.nn.Sequence. The forward pass is implicitly:

def forward(self, inputs):
x = inputs
for layer in self.layers:

x = layer(x)
return x

Parameters

• layers (Iterable) – A sequence of layers defining pipeline structure. Can be a
torch.nn.Sequential module.

• num_stages (int, optional) – The degree of pipeline parallelism. If not specified,
topology must be provided.

• topology (deepseed.pipe.ProcessTopology, optional) – Defines the axes of
parallelism axes for training. Must be provided if num_stages is None.

17

DeepSpeed, Release 0.3.0

• loss_fn (callable, optional) – Loss is computed loss =
loss_fn(outputs, label)

• base_seed (int, optional) – [description]. Defaults to 1234.

• partition_method (str, optional) – [description]. Defaults to ‘parameters’.

• activation_checkpoint_interval (int, optional) – The granularity acti-
vation checkpointing in terms of number of layers. 0 disables activation checkpointing.

• activation_checkpoint_func (callable, optional) – The function to
use for activation checkpointing. Defaults to deepspeed.checkpointing.
checkpoint.

allreduce_tied_weight_gradients()
All reduce the gradients of the tied weights between tied stages

topology()
ProcessTopology object to query process mappings.

ckpt_prefix(checkpoints_path, tag)
Build a prefix for all checkpoint files written by this module.

ckpt_layer_path(ckpt_dir, local_layer_idx)
Customize a prefix for a specific pipeline module layer.

class deepspeed.pipe.LayerSpec(typename, *module_args, **module_kwargs)
Building block for specifying pipeline-parallel modules.

LayerSpec stores the type information and parameters for each stage in a PipelineModule. For example:

nn.Sequence(
torch.nn.Linear(self.in_dim, self.hidden_dim, bias=False),
torch.nn.Linear(self.hidden_hidden, self.out_dim)

)

becomes

layer_specs = [
LayerSpec(torch.nn.Linear, self.in_dim, self.hidden_dim, bias=False),
LayerSpec(torch.nn.Linear, self.hidden_hidden, self.out_dim)]

]

build(log=False)
Build the stored specification.

class deepspeed.pipe.TiedLayerSpec(key, typename, *module_args, forward_fn=None,
tied_weight_attr=’weight’, **module_kwargs)

6.1.2 Training

class deepspeed.runtime.pipe.engine.PipelineEngine(*super_args, **super_kwargs)
A training engine hybrid pipeline, data, and model parallel training.

This engine is created by deepspeed.initialize() when a PipelineModule is provided.

train_batch(data_iter=None)
Progress the pipeline to train the next batch of data. The engine will ingest self.
train_batch_size() total samples collectively across all workers.

18 Chapter 6. Pipeline Parallelism

DeepSpeed, Release 0.3.0

An iterator that over training data should be provided as an argument unless deepspeed.
initialize() was provided a training set. In that event, the training data will automatically be read.

Warning: A total of self.gradient_accumulation_steps() entries will be pulled
from data_iter by each pipeline. There must be sufficient data left in data_iter or else a
StopIteration will halt training.

DeepSpeed provides a convenience class deepspeed.utils.RepeatingLoader that wraps
data loaders to automatically restart upon a StopIteration.

Parameters data_iter (Iterator, optional) – Iterator of training data.

Returns The arithmetic mean of the losses computed this batch.

eval_batch(data_iter)
Evaluate the pipeline on a batch of data from data_iter. The engine will evaluate self.
train_batch_size() total samples collectively across all workers.

This method is equivalent to:

module.eval()
with torch.no_grad():

output = module(batch)

Warning: A total of self.gradient_accumulation_steps() entries will be pulled
from data_iter by each pipeline. There must be sufficient data left in data_iter or else a
StopIteration will halt training.

DeepSpeed provides a convenience class deepspeed.utils.RepeatingLoader that wraps
data loaders to automatically restart upon a StopIteration.

Parameters data_iter (Iterator) – Iterator of data to evaluate.

Returns The arithmetic mean of the losses computed this batch.

is_first_stage()
True if this process is in the first stage in the pipeline.

is_last_stage()
True if this process is in the last stage in the pipeline.

set_dataiterator(iterator)
Store an iterator to sample for training data.

is_gradient_accumulation_boundary()
True if the engine is executing a gradient reduction or optimizer step instruction.

This is overridden from DeepSpeedEngine to force reductions and steps when the pipeline engine is
instructed to do so.

Returns whether reductions and optimizer steps should occur.

Return type bool

forward(*args, **kwargs)
Disabled for pipeline parallel training. See train_batch().

6.1. Pipeline Parallelism 19

DeepSpeed, Release 0.3.0

backward(*args, **kwargs)
Disabled for pipeline parallel training. See train_batch().

step(*args, **kwargs)
Disabled for pipeline parallel training. See train_batch().

module_state_dict()
Override hack to save a pipe model and return the directory path of the save.

This method should only be called by DeepSpeed’s save_checkpoint(). The recommended way of
saving a PipelineModule outside of save_checkpoint() is save_state_dict().

Returns None

load_module_state_dict(state_dict, strict=True)
Override hack to instead use a directory path.

This is important because pipeline models checkpoint by layer instead of rank.

If state_dict is not None or a str, we revert to super() expecting a dict.

Parameters

• state_dict (str, None) – unused

• strict (bool, optional) – Strict state loading. Defaults to True.

set_batch_fn(fn)
Execute a post-processing function on input data.

Parameters fn (function) – The function to run.

6.1.3 Extending Pipeline Parallelism

class deepspeed.runtime.pipe.schedule.PipeSchedule(micro_batches, stages, stage_id)
Directs the execution of a pipeline engine by generating sequences of PipeInstruction.

Schedules are generators that yield sequences of PipeInstruction to process the micro-batches in one
batch. Each yielded step is atomic in the sense that a barrier synchronization can be placed between successive
steps without deadlock.

Below is an example schedule that implements data parallelism with gradient accumulation:

class DataParallelSchedule(PipeSchedule):
def steps(self):

for step_id in range(self.micro_batches):
cmds = [

LoadMicroBatch(buffer_id=0),
ForwardPass(buffer_id=0),
BackwardPass(buffer_id=0),

]
if step_id == self.micro_batches - 1:

cmds.extend([
ReduceGrads(),
OptimizerStep(),

])
yield cmds

def num_pipe_buffers(self):
return 1

20 Chapter 6. Pipeline Parallelism

DeepSpeed, Release 0.3.0

Parameters

• micro_batches (int) – The number of micro-batches that comprise a batch.

• stages (int) – The number of pipeline stages.

• stage_id (int) – The pipe stage that will execute the generated schedule.

steps()
Yield a list of PipeInstruction for each step in the schedule.

Note: Schedules must implement steps() to define the schedule.

Returns Instructions to be executed as one step of the pipeline

num_pipe_buffers()
The number of pipeline buffers that will be used by this stage.

Note: Schedules should specialize num_pipe_buffers() for memory savings at scale.

Returns The number of buffers for the engine to allocate.

stage
Stage index used to configure this schedule.

num_stages
The number of total pipeline stages used to configure this schedule.

num_micro_batches
The number of total micro_batches used to configure this schedule.

is_first_stage
True if the configured stage_id is the first stage in the pipeline.

is_last_stage
True if the configured stage_id is the last stage in the pipeline.

class deepspeed.runtime.pipe.schedule.InferenceSchedule(micro_batches, stages,
stage_id)

A schedule for inferencing batches using pipeline parallelism.

num_pipe_buffers()
Only two pipeline buffers are required for inferencing.

Returns 2

class deepspeed.runtime.pipe.schedule.TrainSchedule(micro_batches, stages, stage_id)
A schedule for training a batch using hybrid parallelism.

Pipeline parallelism is extracted through gradient accumulation and thus convergence follows that of a data
parallel approach with the same batch size.

num_pipe_buffers()
As many buffers as the distance from this stage to the last stage.

class deepspeed.runtime.pipe.schedule.DataParallelSchedule(micro_batches, stages,
stage_id)

An example schedule that trains using traditional data parallelism with gradient accumulation.

6.1. Pipeline Parallelism 21

DeepSpeed, Release 0.3.0

num_pipe_buffers()
Only one pipeline buffer needed.

class deepspeed.runtime.pipe.schedule.PipeInstruction(**kwargs)
Base class for all instructions to be executed by the pipeline engine.

All keyword arguments are stored as members similar to a namedtuple. These are then accessible to the
PipeEngine during execution.

Parameters kwargs (optional) – keyword arguments to store as members

class deepspeed.runtime.pipe.schedule.OptimizerStep(**kwargs)
Performs one step with the optimizer and zeros gradients.

Note: Should be issued after ReduceGrads and ReduceTiedGrads.

Note: Can be a synchronization point among data-parallel ranks.

class deepspeed.runtime.pipe.schedule.ReduceGrads(**kwargs)
Reduce the computed gradients among data-parallel processes within the stage.

class deepspeed.runtime.pipe.schedule.ReduceTiedGrads(**kwargs)
Reduce the computed gradients of tied modules within a pipeline-parallel group.

Warning: The stages included in this synchronization point are not known until the model is partitioned
among pipeline stages. In the worst case, it includes all pipeline stages. This instruction should be scheduled
carefully to avoid deadlocks.

class deepspeed.runtime.pipe.schedule.BufferOpInstruction(buffer_id, **kwargs)
A pipeline instruction that operates on pipeline buffer(s).

Parameters buffer_id (int) – the index of the pipeline buffer() to modify.

class deepspeed.runtime.pipe.schedule.LoadMicroBatch(buffer_id, **kwargs)
Load a micro-batch into a buffer.

Roughly:

buffers['inputs'][buffer_id] = next(data_iter)

class deepspeed.runtime.pipe.schedule.ForwardPass(buffer_id, **kwargs)
Compute a forward pass.

Roughly:

buffers['ouputs'][buffer_id] = forward(buffers['inputs'][buffer_id])

class deepspeed.runtime.pipe.schedule.BackwardPass(buffer_id, **kwargs)
Compute a backward pass and accumulate gradients.

Roughly:

outputs = buffers['ouputs'][buffer_id]
gradients = buffers['gradients'][buffer_id]
torch.autograd.backward(tensors=outputs,

grad_tensors=gradients)

22 Chapter 6. Pipeline Parallelism

DeepSpeed, Release 0.3.0

class deepspeed.runtime.pipe.schedule.SendActivation(buffer_id, **kwargs)
Send activations to the next stage in the pipeline.

Roughly:

send(buffers['outputs'][buffer_id])

Note: The communication is blocking and must be paired with a RecvActivation on the next pipeline
stage to avoid deadlock.

class deepspeed.runtime.pipe.schedule.RecvActivation(buffer_id, **kwargs)
Receive activations from the previous stage in the pipeline.

Roughly:

buffers['inputs'][buffer_id] = recv()

Note: The communication is blocking and must be paired with a SendActivation on the previous pipeline
stage to avoid deadlock.

class deepspeed.runtime.pipe.schedule.SendGrad(buffer_id, **kwargs)
Send computed gradients to the previous pipeline stage. with respect to the received activations

Note: Only received tensors with requires_grad==True will produce gradients. Missing gradients will
be replaced with None on the receiving stage.

Note: The communication is blocking and must be paired with a RecvGrad on the previous pipeline stage to
avoid deadlock.

class deepspeed.runtime.pipe.schedule.RecvGrad(buffer_id, **kwargs)
Receive computed gradients the next pipeline stage.

Note: Only activations with requires_grad==True will produce gradients. Missing gradients will be
replaced with None.

Note: The communication is blocking and must be paired with a SendGrad on the next pipeline stage to
avoid deadlock.

6.1. Pipeline Parallelism 23

DeepSpeed, Release 0.3.0

24 Chapter 6. Pipeline Parallelism

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

DeepSpeed, Release 0.3.0

26 Chapter 7. Indices and tables

Python Module Index

d
deepspeed.runtime.pipe.engine, 18
deepspeed.runtime.pipe.schedule, 20

27

DeepSpeed, Release 0.3.0

28 Python Module Index

Index

A
add_config_arguments() (in module deepspeed),

1
allreduce_tied_weight_gradients() (deep-

speed.pipe.PipelineModule method), 18

B
backward() (deepspeed.runtime.pipe.engine.PipelineEngine

method), 19
backward() (in module deepspeed.DeepSpeedEngine),

9
BackwardPass (class in deep-

speed.runtime.pipe.schedule), 22
batch (deepspeed.config.TrainingConfig attribute), 5
BatchConfig (class in deepspeed.config), 5
BufferOpInstruction (class in deep-

speed.runtime.pipe.schedule), 22
build() (deepspeed.pipe.LayerSpec method), 18

C
checkpoint() (in module deepspeed.checkpointing),

13
CheckpointFunction (class in deep-

speed.checkpointing), 13
ckpt_layer_path() (deep-

speed.pipe.PipelineModule method), 18
ckpt_prefix() (deepspeed.pipe.PipelineModule

method), 18
clip (deepspeed.config.FP16Config attribute), 6
Config (class in deepspeed.config), 6
configure() (in module deepspeed.checkpointing),

12
CudaRNGStatesTracker (class in deep-

speed.checkpointing), 13

D
DataParallelSchedule (class in deep-

speed.runtime.pipe.schedule), 21
deepspeed.runtime.pipe.engine (module), 18

deepspeed.runtime.pipe.schedule (module),
20

DeepSpeedTransformerConfig (class in deep-
speed), 15

DeepSpeedTransformerLayer (class in deep-
speed), 16

E
enabled (deepspeed.config.FP16Config attribute), 6
eval_batch() (deep-

speed.runtime.pipe.engine.PipelineEngine
method), 19

F
forward() (deepspeed.runtime.pipe.engine.PipelineEngine

method), 19
forward() (in module deepspeed.DeepSpeedEngine),

9
ForwardPass (class in deep-

speed.runtime.pipe.schedule), 22
fp16 (deepspeed.config.TrainingConfig attribute), 5
FP16Config (class in deepspeed.config), 6

G
get_cuda_rng_tracker() (in module deep-

speed.checkpointing), 13
gradient_accumulation_steps (deep-

speed.config.BatchConfig attribute), 5

I
InferenceSchedule (class in deep-

speed.runtime.pipe.schedule), 21
init_distributed() (in module deepspeed), 2
initialize() (in module deepspeed), 2
is_configured() (in module deep-

speed.checkpointing), 13
is_first_stage (deep-

speed.runtime.pipe.schedule.PipeSchedule
attribute), 21

29

DeepSpeed, Release 0.3.0

is_first_stage() (deep-
speed.runtime.pipe.engine.PipelineEngine
method), 19

is_gradient_accumulation_boundary()
(deepspeed.runtime.pipe.engine.PipelineEngine
method), 19

is_gradient_accumulation_boundary() (in
module deepspeed.DeepSpeedEngine), 10

is_last_stage (deep-
speed.runtime.pipe.schedule.PipeSchedule
attribute), 21

is_last_stage() (deep-
speed.runtime.pipe.engine.PipelineEngine
method), 19

is_valid() (deepspeed.config.BatchConfig method),
6

is_valid() (deepspeed.config.Config method), 7

L
LayerSpec (class in deepspeed.pipe), 18
load_checkpoint() (in module deep-

speed.DeepSpeedEngine), 11
load_module_state_dict() (deep-

speed.runtime.pipe.engine.PipelineEngine
method), 20

LoadMicroBatch (class in deep-
speed.runtime.pipe.schedule), 22

M
model_parallel_cuda_manual_seed() (in

module deepspeed.checkpointing), 13
module_state_dict() (deep-

speed.runtime.pipe.engine.PipelineEngine
method), 20

N
num_micro_batches (deep-

speed.runtime.pipe.schedule.PipeSchedule
attribute), 21

num_pipe_buffers() (deep-
speed.runtime.pipe.schedule.DataParallelSchedule
method), 21

num_pipe_buffers() (deep-
speed.runtime.pipe.schedule.InferenceSchedule
method), 21

num_pipe_buffers() (deep-
speed.runtime.pipe.schedule.PipeSchedule
method), 21

num_pipe_buffers() (deep-
speed.runtime.pipe.schedule.TrainSchedule
method), 21

num_stages (deepspeed.runtime.pipe.schedule.PipeSchedule
attribute), 21

O
OptimizerStep (class in deep-

speed.runtime.pipe.schedule), 22

P
PipeInstruction (class in deep-

speed.runtime.pipe.schedule), 22
PipelineEngine (class in deep-

speed.runtime.pipe.engine), 18
PipelineModule (class in deepspeed.pipe), 17
PipeSchedule (class in deep-

speed.runtime.pipe.schedule), 20

R
RecvActivation (class in deep-

speed.runtime.pipe.schedule), 23
RecvGrad (class in deepspeed.runtime.pipe.schedule),

23
ReduceGrads (class in deep-

speed.runtime.pipe.schedule), 22
ReduceTiedGrads (class in deep-

speed.runtime.pipe.schedule), 22
reset() (in module deepspeed.checkpointing), 13
resolve() (deepspeed.config.BatchConfig method), 6
resolve() (deepspeed.config.Config method), 6

S
save_checkpoint() (in module deep-

speed.DeepSpeedEngine), 12
SendActivation (class in deep-

speed.runtime.pipe.schedule), 22
SendGrad (class in deepspeed.runtime.pipe.schedule),

23
set_batch_fn() (deep-

speed.runtime.pipe.engine.PipelineEngine
method), 20

set_dataiterator() (deep-
speed.runtime.pipe.engine.PipelineEngine
method), 19

stage (deepspeed.runtime.pipe.schedule.PipeSchedule
attribute), 21

step() (deepspeed.runtime.pipe.engine.PipelineEngine
method), 20

step() (in module deepspeed.DeepSpeedEngine), 10
steps() (deepspeed.runtime.pipe.schedule.PipeSchedule

method), 21

T
TiedLayerSpec (class in deepspeed.pipe), 18
topology() (deepspeed.pipe.PipelineModule

method), 18
train_batch() (deep-

speed.runtime.pipe.engine.PipelineEngine
method), 18

30 Index

DeepSpeed, Release 0.3.0

train_batch_size (deepspeed.config.BatchConfig
attribute), 5

train_micro_batch_size_per_gpu (deep-
speed.config.BatchConfig attribute), 5

TrainingConfig (class in deepspeed.config), 5
TrainSchedule (class in deep-

speed.runtime.pipe.schedule), 21

Index 31

	Model Setup
	Training Setup

	Configuration
	DeepSpeed Configuration

	Training API
	Training API

	Checkpointing API
	Model Checkpointing
	Activation Checkpointing

	Transformer Kernel API
	Transformer Kernels

	Pipeline Parallelism
	Pipeline Parallelism

	Indices and tables
	Python Module Index
	Index

